Artikel

HZDR-Physiker entdecken optimale Bedingungen für Laserplasma-Beschleunigung

Klassische Elektronenbeschleuniger haben sich zu einem unverzichtbaren Instrument der modernen Forschung entwickelt. Doch sogar kleinere Varianten dieser Super-Mikroskope umfassen die Größe eines Fußballfeldes. Eine Alternative, die wesentlich weniger Platz benötigt und viel höhere Spitzenströme erzielen kann, bietet die Laserplasma-Beschleunigung. Das könnte die Basis für die nächste Generation kompakter Lichtquellen liefern. Bislang war es aber schwer, einen verlässlichen und stabilen Elektronenstrahl mit den Laserbeschleunigern zu erzeugen: die Voraussetzung für mögliche Anwendungen. HZDR-Physiker konnten eine Methode entwickeln, um die Stabilität und die Qualität des Strahls zu erhöhen.

An sich scheint das Prinzip der Laser-Beschleunigung relativ einfach: Ein gebündelter, ultrastarker Laserstrahl trifft auf einen Hauch von Gas, wodurch sich sofort ein Plasma – ein ionisierter Materiezustand oder, anders ausgedrückt, ein brodelndes Gemisch geladener Teilchen – bildet. Die Wucht des Lichtpulses entreißt den Atomen die Elektronen und kreiert eine Art Blase im Plasma, die ein starkes elektrisches Feld enthält. Dieses Feld, das der Laserpuls wie eine Heckwelle hinter sich herzieht, schließt die Elektronen ein und beschleunigt sie auf nahezu Lichtgeschwindigkeit. „Mithilfe der rasanten Teilchen können wir Röntgenstrahlung erzeugen“, erläutert Dr. Arie Irman vom Institut für Strahlenphysik am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) den Zweck des Vorgangs. „Wenn wir diese Elektronenbündel zum Beispiel mit einem weiteren Laserstrahl zusammenprallen lassen, entstehen helle, kurze Röntgenblitze – ein überaus wertvolles Forschungswerkzeug, um extreme Materiezustände zu untersuchen.“

Rechte Zeit + Rechter Ort = Perfekte Beschleunigung
Weitere Informationen: hier