Gemeinschaftsausschuss Hochleistungskeramik

Dokumenten-Center

Verarbeitungseigenschaften synthetischer keramischer Rohstoffe
Arbeitskreis


Zugriff verweigert


Haben Sie Fragen oder wollen sich aktiv in den Ausschuss einbringen? Senden Sie uns Ihre Anfrage an: fachgremien@dgm.de 


Der Tausendsassa. Hochleistungskeramik

Aufgrund ihrer besonderen thermischen, mechanischen und chemischen Eigenschaften kommt der Hochleistungskeramik (HLK) in vielen Anwendungsbereichen heute bereits eine Schlüsselrolle zu. Dabei reicht die Bandbreite von Gasturbinen, Pumpen oder Dichtungssystemen über ressourcenschonende Lösungen für die chemische Verfahrenstechnik bis hin zu Gelenkimplantaten und Dentalprodukten wie Kronen oder Brücken. So bieten Hochleistungskeramiken schon jetzt wesentliche Antworten aufdrängende Fragen zu Energie, Mobilität, Lebensqualität und Sicherheit.

In Zukunft wird keramischen Verbundwerkstoffen und energieeffizienten hybriden Werkstoffen mit HLK-Elementen eine noch stärkere Rolle zukommen als bisher. Hoch belastbare Faserkeramiken mit langer Lebensdauer könnten einen wesentlichen Beitrag zur Ressourcenschonung fossiler Energieträger und damit zum Klimaschutz leisten. Gleiches gilt für ökologisch wertvolle Magnetwerkstoffe mit verbessertem Preis-Leistungsverhältnis für die Windkraftanwendung oder stationäre Stromspeicher – sofern hier die Entwicklung produktiverer Fertigungsverfahren gelingt. Sowohl im Bereich der Elektromobilität als auch bei der konventionellen Antriebstechnik könnten langlebige und zuverlässige Verbund- und Schichtsysteme auf Keramikbasis bald unverzichtbar sein.
 

Verbund bis zum Produkt

Um den Anforderungen der nächsten Jahrzehnte gerecht zu werden, muss das Eigenschafts-Mikrostruktur-Verständnis sowohl für neue Funktions- und Strukturwerkstoffe als auch für Verbundwerkstoffe, Komposite und Hybride allerdings deutlich verbessert werden. Zudem müssen die Möglichkeiten neuartiger Technologien wie additiver Herstellungs- oder feldunterstützter Sinterverfahren besser ausgeschöpft und Methoden der FEM-Simulation weiterentwickelt werden. Gleiches gilt für Methoden der Werkstoffdiagnostik oder die Multiskalen-Simulation zum Verständnis der atomaren Wechselwirkungen bei Vielkomponentensystemen.

Die Erschließung neuer Innovationspotentiale für keramische Hochleistungswerkstoffe und der damit verbundenen Technologien ist eine Gemeinschaftsaufgabe, für die eine langfristig ausgerichtete Grundlagenforschung mit einer kurz- und mittelfristig orientierten Produkt- und Technologieentwicklung besser vernetzt werden muss. Wissenschaftler, Keramikhersteller und Anwender  sollten hierzu noch stärker als bisher interdisziplinär kooperieren und dabei auch für den dringend erforderlichen Fachkräftenachwuchs sorgen.

 

Expertenbroschüre

Zukunftspotentiale von Hochleistungskeramiken